Old Exam Question

Feb. 2010, Ex. 5

Exercise

In this exercise we will implement a representation of
3D-geometrical objects in a computer game.

Given is a struct point which stores 3D-points.

struct point { o 5 7)
double x, y, z;

};

(From: Exam Feb. 2010, Ex. 5)

Exercise a)

Exercise a)

Implement the following function which computes the distance between a
given point and the origin.

Hint: The function std: :sgrt (double d) computes the
square root of d.

// POST: returns the distance between p and struct point {
// the origin double x, y, z;
double distance (const pointé& p); };

(x,y,2)
Z. .

(From: Exam Feb. 2010, Ex. 5) 3

Exercise a)

Solution a)

-
// POST: returns the distance between p and the origin
double distance (const pointé& p) {

return std::sqrt(p.x * p.x + p.y * p.y + p.2 * p.z);

k}

~

(From: Exam Feb. 2010, Ex. 5)

Exercise b)

Exercise b)

Propose a struct named 1ine, which can be used to
represent 3D-straight-lines.

A particular straight line does not have to be representable
uniquely, but conversely every object of type 1ine hasto
represent a unique straight line. If necessary you can for this
reason define a suitable invariant (// INV:...)which has
to be met when using the 1ine struct.

struct point { P
double x, y, z;
}i

(From: Exam Feb. 2010, Ex. 5)

Exercise b)

Solution b)

line
//

*
*
*
*
*
*
*
‘$
*

(From: Exam Feb. 2010, Ex. 5)

Exercise b)

Solution b)

Two different
points
- unique line

line
//

(From: Exam Feb. 2010, Ex. 5)

Exercise b)

Solution b)

-
struct line {
point a, b; // INV: a != b
};
N\

(From: Exam Feb. 2010, Ex. 5)

Exercise c)

Exercise c)

Based on your struct 1 ine implement the following function which
computes the straight line through two points.

Make sure to meet your invariant from part b). You should define
and verify a suitable PRE-condition for this reason.

// POST: returns a straight line through a and b
line compute line (const pointé& a, const pointé& b);

struct point {
double x, y, z;

};

(From: Exam Feb. 2010, Ex. 5) 9

Exercise c)

Solution c)

(// PRE: a '= b
// POST: returns a straight line through a and b
line compute_ line (const pointé& a, const point& b) {

line g;
g.a = a;
g.b = b;
return g;

assert((a.x '=b.x) || (a.y '=b.y) || (a.z '=Db.z));

(From: Exam Feb. 2010, Ex. 5)

10

