
Old Exam Question
Feb. 2010, Ex. 5

Exercise

In this exercise we will implement a representation of
3D-geometrical objects in a computer game.

Given is a struct point which stores 3D-points.

2

struct point {

double x, y, z;

};

(x,y,z)

(From: Exam Feb. 2010, Ex. 5)

Exercise a)

(From: Exam Feb. 2010, Ex. 5) 3

// POST: returns the distance between p and

// the origin

double distance(const point& p);

struct point {

double x, y, z;

};

(x,y,z)

Exercise a)

Implement the following function which computes the distance between a
given point and the origin.

Hint: The function std::sqrt (double d) computes the
square root of d.

Exercise a)

(From: Exam Feb. 2010, Ex. 5) 4

// POST: returns the distance between p and the origin

double distance(const point& p) {

return std::sqrt(p.x * p.x + p.y * p.y + p.z * p.z);

}

Solution a)

Exercise b)

(From: Exam Feb. 2010, Ex. 5) 5

struct point {

double x, y, z;

};

(x,y,z)

Exercise b)

Propose a struct named line, which can be used to
represent 3D-straight-lines.

A particular straight line does not have to be representable
uniquely, but conversely every object of type line has to
represent a unique straight line. If necessary you can for this
reason define a suitable invariant (// INV:...) which has
to be met when using the line struct.

Exercise b)

(From: Exam Feb. 2010, Ex. 5) 6

line

Solution b)

Exercise b)

(From: Exam Feb. 2010, Ex. 5) 7

line

Two different
points

 unique line

Solution b)

Exercise b)

(From: Exam Feb. 2010, Ex. 5) 8

struct line {

point a, b; // INV: a != b

};

Solution b)

Exercise c)

(From: Exam Feb. 2010, Ex. 5) 9

struct line {

point a, b; // INV: a != b

};

// POST: returns a straight line through a and b

line compute_line (const point& a, const point& b);

struct point {

double x, y, z;

};

Exercise c)

Based on your struct line implement the following function which
computes the straight line through two points.

Make sure to meet your invariant from part b). You should define
and verify a suitable PRE-condition for this reason.

Exercise c)

(From: Exam Feb. 2010, Ex. 5) 10

// PRE: a != b

// POST: returns a straight line through a and b

line compute_line (const point& a, const point& b) {

assert((a.x != b.x) || (a.y != b.y) || (a.z != b.z));

line g;

g.a = a;

g.b = b;

return g;

}

Solution c)

